Changes in forested wetland composition, structure, and processes along a tidal gradient on the Apalachicola River, FL, USA

Christopher J. Anderson and B. Graeme Lockaby Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL 36849

June 4, 2012 9th INTECOL International Wetland Conference, Orlando, FL

- Tidal freshwater forested wetlands
 - Upriver extent of tidal influence
 - Most prominent on larger rivers with gradual relief
 - Normally freshwater but prone to periodic saltwater intrusion

- Environmental services related to forested riparian wetlands along the river
 - Carbon/nutrient cycling
 - Water quality
 - Wildlife habitat
 - Forest products

Project goal

Using the Apalachicola River, evaluate how forested wetland conditions and processes change across a tidal gradient

Objectives

- Examine how tidal hydrology influences:
 - Forest structure and composition
 - Physio-chemical conditions
 - Foliar nutrient cycling

Study design
17 transects
37 forest plots (500 m²)
10 water level recorders

Lower Apalachicola River study sites.

- Wetland measures across a tidal gradient
 - Species structure and composition (2007-10):
 - Measured forest tree (>2.5 cm dbh) density, basal area/growth, and size class
 - Determined species importance values and community composition
 - Forest soils and woody debris (2009-10)
 - Soil nutrient conditions (% C, N, S, exch. P)
 - Electrical conductivity
 - Coarse woody debris
 - Examined N and P leaf translocation and flux by tidal and non-tidal trees(2008)

Cluster analysis dendrogram for lower Apalachicola River forested wetlands. Matrix color coding based on species IV range between 0 (Min) and 64 (Max).

Micro-topography and species composition

Importance values for *Nyssa biflora* and *Taxodium distichum* related to plot elevation coefficient of variation in tidal stands along the lower Apalachicola River.

Mean (±SE) density and tree size classes for tidal (n=7) and non-tidal (n=8) forest stands along the lower Apalachicola River.

Mean (±SE) basal area and annual increment growth of tidal (n=7) and non-tidal (n=8) forest stands

Mean surface soil measures

Mean (±SE) surface soil (0-15 cm) measures for tidal (n=20) and non-tidal (n=17) forest plots along the lower Apalachicola River. Letters denote significant differences (p<0.05) per nested ANOVA.

Coarse woody debris

Mean (±SE) coarse woody debris (CWD) for tidal (n=3) and non-tidal (n=5) forest stands along the lower Apalachicola River. * denotes significant difference detected at p<0.05 per ANOVA.

Nutrient resorption proficiency

Percent tidal (n=19) and non-tidal (n=9) trees sampled with complete, intermediate, or incomplete resorption proficiency of a) nitrogen and b) phosphorus (per Killingbeck 1996).

Litterfall and nutrient flux

	Litterfall		
Plot	(kg ha^{-1})	N (kg ha ⁻¹)	$P(kg ha^{-1})$
Tidal			
1	4399	35.8	1.4
2	3997	31.9	1.4
15	3672	31.2	1.2
7pt	4513	36.8	1.4
WS2	2472	21.0	1.0
Avg.	3811	31.3	1.3
Non-tidal			
3	8107	100.4	5.3
5	5661	71.6	3.9
7	6180	77.5	4.0
Avg.	6649	83.2	4.4

Estimated litterfall and nutrient flux for tidal (n=5) and non-tidal (n=3) forest stands along the lower Apalachicola River.

Summary of findings:

- Forest tree species and community composition provided clear indications of tidal influence
- Microtopography within tidal sites appears to be important for community composition
- Tidal hydrology and periodic saltwater intrusion resulted in consistent differences in soil C, N, S, exch. P, electrical conductivity, and other soil measures
- Tidal wetlands appeared to be P-limited based on nutrient resorption efficiencies and N:P and C:P ratios

- Summary of findings (continued):
 - Tidal wetlands appeared to be P-limited based on leaf nutrient resorption measures and foliage/litterfall N:P and C:P ratios.
 - The nutrient pool associated with tidal forests is significantly lower than non-tidal forests.

Acknowledgements

- AU Center for Forest Sustainability, McIntire-Stennis Grant Program
- Apalachicola National Estuarine Reserve, Florida Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission
- A. Cerro, F. Barksdale, J. Clewley, N. Click, J. Dow, R. Governo, R. Jolly, T. Kesler, L.Levi, H. Light, J. Mitchell, J. Morse, W. Morse, J. Timpone, J. Trusty, J. Wanat

Environmental services related to forested riparian wetlands Carbon WHEN DUPESTIC THE THE Wildlife Water q